Secure Encryption in Machine Learning: Enabling Privacy-Preserving AI

Introduction

Machine learning (ML) is transforming industries by enabling data-driven insights and automation. However, ML models often require access to sensitive data, raising privacy and security concerns—especially in healthcare, finance, and personal analytics. Fully Homomorphic Encryption (FHE) enables privacy-preserving ML by allowing computations directly on encrypted data, so that model owners and cloud providers never see the raw data. This article focuses on how FHE is applied in ML, with a brief mention of alternative privacy-preserving techniques.


Background: Why Privacy Matters in ML

Traditional ML workflows require access to raw data for training and inference. This exposes sensitive information to cloud providers or third parties, creating risks of data breaches and regulatory non-compliance. FHE allows data to remain encrypted throughout the ML pipeline, ensuring privacy even when using untrusted infrastructure.


How FHE Enables Privacy-Preserving Machine Learning

FHE allows both training and inference on encrypted data, but most practical applications today focus on encrypted inference due to performance constraints. Here’s how FHE is used in ML:

  • Encrypted Inference: Users encrypt their input data and send it to a server hosting an ML model. The server computes predictions on the encrypted data and returns encrypted results, which only the user can decrypt.
  • Encrypted Training (Emerging): Some research explores training simple models (e.g., linear regression) directly on encrypted data, but this is still limited by computational cost.

Precise Pseudocode for FHE-based ML Inference:

# Key generation (done once)
public_key, private_key = fhe.keygen()

# User side: encrypt input
user_data = ...  # e.g., feature vector
encrypted_input = fhe.encrypt(public_key, user_data)

# Server side: evaluate model on encrypted input
# (model parameters may also be encrypted)
encrypted_output = fhe.evaluate(model, encrypted_input)

# User side: decrypt result
result = fhe.decrypt(private_key, encrypted_output)
# result == model(user_data)

Pseudocode for FHE-based Linear Regression Training (conceptual):

# For each training step
for x_enc, y_enc in encrypted_dataset:
	# Compute encrypted prediction
	y_pred_enc = fhe.evaluate(model, x_enc)
	# Compute encrypted loss and gradients
	loss_enc = fhe.loss(y_pred_enc, y_enc)
	grad_enc = fhe.gradient(loss_enc, model)
	# Update model parameters (may require bootstrapping)
	model = fhe.update(model, grad_enc)

Other Approaches to Secure ML

While FHE is a leading technology for encrypted computation, other privacy-preserving techniques are also used:

  • Secure Multi-Party Computation (SMPC): Allows multiple parties to jointly compute a function over their inputs while keeping those inputs private. Used in collaborative ML and federated learning.
  • Differential Privacy: Adds statistical noise to data or model outputs to prevent leakage of individual data points. Widely used by tech companies for privacy-preserving analytics.

Each approach has its own strengths and limitations. FHE is unique in allowing arbitrary computation on encrypted data by a single party, but is often slower than SMPC or differential privacy methods.


Example: Private Inference with Logistic Regression

Suppose a hospital wants to use a cloud-based ML model to predict disease risk, but cannot share patient data. With FHE:

  1. The hospital encrypts patient features and sends them to the cloud.
  2. The cloud server runs the logistic regression model on the encrypted data using FHE operations (e.g., encrypted matrix multiplication and activation).
  3. The encrypted prediction is sent back to the hospital, which decrypts it locally.

This ensures the cloud never sees the raw patient data or the prediction, and the model owner never sees the decrypted input.


Challenges and Limitations

  • Performance: FHE operations are orders of magnitude slower than standard ML computations.
  • Supported Models: Only certain models (e.g., linear, logistic regression, simple neural networks) are practical with current FHE schemes.
  • Limited Training: Most FHE-ML applications focus on inference, as training on encrypted data is still highly challenging.
  • Ciphertext Expansion: Encrypted data and model parameters are much larger than their plaintext counterparts.

Applications

  • Healthcare: Predictive analytics on encrypted patient data
  • Finance: Credit scoring and fraud detection without exposing sensitive information
  • Federated learning: Aggregating encrypted model updates from multiple parties
  • Secure data marketplaces: Allowing model evaluation on encrypted third-party data

References

  1. Brakerski, Z., Gentry, C., & Vaikuntanathan, V. (2014). (Leveled) Fully Homomorphic Encryption without Bootstrapping. ACM Transactions on Computation Theory.
  2. Microsoft SEAL, IBM HELib, PALISADE — Open-source FHE libraries for ML.
  3. Dowlin, N., et al. (2016). CryptoNets: Applying Neural Networks to Encrypted Data with High Throughput and Accuracy. ICML.
  4. HomomorphicEncryption.org — Community and resources for FHE in ML.

Subscribe

Get an email when I write new posts. Learn deep level technical stuff, or some applied AI